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Introduction

Inverse reinforcement learning (IRL) is the task of determining the reward function that generated a
set of trajectories: sequences of state-action pairs. Multi-task inverse IRL uses demonstrations of
similar tasks, such as grasping different types of containers, to jointly infer the reward functions for
each task. By exploiting the similarity between the reward functions, multi-task methods can
achieve greater sample efficiency than conventional single-task IRL algorithms.

Previous work on the multi-task IRL problem builds on Bayesian IRL. Unfortunately, no extant
Bayesian IRL methods scale to complex environments with high-dimensional, continuous state
spaces such as robotics. By contrast, approaches based on maximum causal entropy (MCE) show
more promise. Although the original MCE IRL algorithm is limited to discrete state spaces, recent
extensions such as guided cost learning and adversarial IRL scale to challenging continuous control
environment.

Regularized MCE IRL

The single-task IRL problem is to recover a reward function 𝑅𝑅 given demonstrations 𝜏𝜏 from an MDP
𝑀𝑀𝑖𝑖 = (𝑆𝑆,𝐴𝐴,𝑇𝑇, 𝛾𝛾,𝜇𝜇,𝑅𝑅) and access to the world model (𝑆𝑆,𝐴𝐴,𝑇𝑇, 𝛾𝛾,𝜇𝜇). Maximum causal entropy (MCE)
IRL assumes the reward function is linear in features over state-action pairs:

𝑅𝑅 𝑠𝑠, 𝑎𝑎 = 𝜃𝜃𝑇𝑇𝐹𝐹 𝑠𝑠,𝑎𝑎 .

For convenience, we write 𝐹𝐹 𝜏𝜏 to mean the (discounted) sum of features over state-action pairs in
the trajectory. Maximum causal entropy IRL is equivalent to maximum causal likelihood estimation
of 𝜃𝜃 given 𝜏𝜏, i.e. finding 𝜃𝜃 that maximize the log likelihood:

𝔏𝔏 𝜃𝜃; 𝜏𝜏 = ∑𝑡𝑡=0𝑇𝑇 logℙ(𝑎𝑎𝑡𝑡 ∣ 𝑠𝑠0:𝑡𝑡 , 𝑎𝑎0:𝑡𝑡−1).

The multi-task IRL problem is to jointly infer reward weights 𝜃𝜃𝑖𝑖 given expert demonstrations 𝜏𝜏𝑖𝑖 from
MDPs 𝑀𝑀𝑖𝑖 = (𝑆𝑆,𝐴𝐴,𝑇𝑇, 𝛾𝛾, 𝜇𝜇,𝑅𝑅𝑖𝑖). A useful inductive bias is that the rewards are similar between tasks,
i.e. 𝜆𝜆 𝜃𝜃𝑖𝑖 − �̅�𝜃 2

should be small, where 𝜆𝜆 > 0. Letting 𝜋𝜋𝑖𝑖 denote the softmax policy for reward
parameters 𝜃𝜃𝑖𝑖, the regularised loss and gradient are:

𝔏𝔏 𝜃𝜃𝑖𝑖; 𝜏𝜏 = ∑𝑡𝑡=0𝑇𝑇 logℙ(𝑎𝑎𝑡𝑡 ∣ 𝑠𝑠0:𝑡𝑡 , 𝑎𝑎0:𝑡𝑡−1) + 1
2
𝜆𝜆 𝜃𝜃𝑖𝑖 − �̅�𝜃 2,

𝛻𝛻𝔏𝔏 𝜃𝜃𝑖𝑖; 𝜏𝜏 = 𝐹𝐹 𝜏𝜏𝑖𝑖 − 𝐹𝐹 𝜋𝜋𝑖𝑖 − 𝜆𝜆 𝜃𝜃𝑖𝑖 − �̅�𝜃 .

We evaluate this multi-task IRL algorithm in a few-shot reward learning problem on the above
gridworld. Each cell is either a wall (black), or one of five objects types. We define three different
reward functions in terms of these object types, as specified the rows in the legend.

Our regularised MCE IRL algorithm is presented with a 1000 demonstrations from the middle and
bottom reward functions, and between 1 and 100 trajectories from the top reward function. The
value of the resulting policies (best of 5 seeds) is shown above, compared against two baselines and
an optimal ‘oracle’ policy.

The regularised algorithm recovers a near-optimal policy after seeing only two trajectories, and for
some seeds requires only a single trajectory. By contrast, the single-task baseline requires 50 or
more trajectories to find a good policy, while the joint training baseline never succeeds.

Meta Adversarial IRL

Conclusion & Further Work
Sample efficient solutions to the multi-task IRL problem are critical for enabling real-world
applications, where collecting human demonstrations is expensive and slow. The multi-task IRL
problem has previously been studied exclusively from a Bayesian IRL perspective. In this paper we
took the alternative approach of formulating the multi-task problem inside the maximum causal
entropy IRL framework.

Our first contribution uses the original MCE IRL algorithm, by adding a regularisation term to the
loss. Experiments find our regularized MCE IRL algorithm can perform one-shot imitation learning
in an environment that otherwise requires hundreds of demonstrations to learn.

In preliminary work, we combined the Reptile meta-learner with adversarial IRL, a sample-based
MCE IRL algorithm. Testing revealed that adversarial IRL can only learn from unimodal expert
policies, seriously limiting the applicability of meta-AIRL. We conjecture this limitation in
adversarial IRL is related to the mode collapse in generative adversarial networks (GAN). A fruitful
research direction might be to apply recent innovations in GAN training, such as unrolling the
optimisation of the discriminator or variational learning, to stabilise adversarial IRL training.
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The MCE IRL algorithm has two major limitations: it assumes known dynamics T, and a linear
reward function R. These shortcomings have been addressed by recent work such as adversarial
IRL, a sample-based algorithm using a neural network to represent the reward R by parameters 𝜃𝜃.

Meta-AIRL: Reptile and adversarial IRL (AIRL)
Randomly initialize network with parameters 𝜙𝜙0
for 𝑡𝑡 = 1 …𝑇𝑇:

Sample task 𝑖𝑖 with demonstrations 𝜏𝜏𝑖𝑖
Set 𝜃𝜃0 ← 𝜙𝜙𝑡𝑡−1
for 𝑛𝑛 = 1 …𝑁𝑁:

𝜃𝜃𝑛𝑛 ← AIRL(𝜃𝜃𝑛𝑛−1, 𝜏𝜏𝑖𝑖), one step of AIRL
Update 𝜙𝜙𝑡𝑡 ← 𝜙𝜙𝑡𝑡−1 + 𝛼𝛼(𝜃𝜃𝑁𝑁 − 𝜙𝜙𝑡𝑡−1)

We used Reptile, a computationally efficient meta-learning algorithm, to find an initialisation 𝜙𝜙 of
the reward network that can be quickly finetuned for a new task. Our algorithm, above, repeatedly
samples a task and then runs 𝑁𝑁 steps of adversarial IRL starting from the current initialisation 𝜙𝜙.
The initialisation is then updated along the line to the final iterate of adversarial IRL.

We evaluate on a multi-task variant of the mountain car continuous control problem, illustrated
above. The episode ends as soon as the car touches either flag. One flag is the goal and gives 100
reward, the other a decoy with a -100 penalty. We create two test cases, called fixed and variable,
each consisting of two environments. In the fixed test case, the side of the goal flag is static. In the
variable test case, the colour of goal flag is static, but the side varies between episodes.

In the fixed test case (left), both the single-task baseline and our meta-AIRL algorithm produce
near-optimal solutions. We conjecture this is because the optimal policy is unimodal, making it
simple to extrapolate from a single trajectory. In the variable test case (right), single-task AIRL fails
to find a good solution even after observing 100 trajectories. Reptile can only learn a good
initialisation in the outer loop when progress is made in the AIRL inner loop, so unsurprisingly our
meta-AIRL algorithm also fails. Note the variable test case has a bimodal expert policy.

Our findings suggest that adversarial IRL succeeds only in environments with a unimodal optimal
policy. In such environments, a handful of trajectories is sufficient to learn the reward, leaving little
room for improvement from using meta-learning. However, many practical tasks (such as multi-
step assembly) have multimodal expert policies, making this a pressing area for further research.
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