
Active Inverse Reward Design

Sören Mindermann 1 Rohin Shah 1 Adam Gleave 1 Dylan Hadfield-Menell 1

Abstract

Reward design, the problem of selecting an ap-
propriate reward function for an AI system, is
both critically important, as it encodes the task
the system should perform, and challenging, as it
requires reasoning about and understanding the
agent’s environment in detail. AI practitioners of-
ten iterate on the reward function for their systems
in a trial-and-error process to get their desired be-
havior. Inverse reward design (IRD) is a prefer-
ence inference method that infers a true reward
function from an observed, possibly misspecified,
proxy reward function. This allows the system to
determine when it should trust its observed reward
function and respond appropriately. This has been
shown to avoid problems in reward design such as
negative side-effects (omitting a seemingly irrele-
vant but important aspect of the task) and reward
hacking (learning to exploit unanticipated loop-
holes). In this paper, we actively select the set of
proxy reward functions available to the designer.
This improves the quality of inference and sim-
plifies the associated reward design problem. We
present two types of queries: discrete queries,
where the system designer chooses from a dis-
crete set of reward functions, and feature queries,
where the system queries the designer for weights
on a small set of features. We evaluate this ap-
proach with experiments in a personal shopping
assistant domain and a 2D navigation domain. We
find that our approach leads to reduced regret at
test time compared with vanilla IRD. Our results
indicate that actively selecting the set of available
reward functions is a promising direction to im-
prove the efficiency and effectiveness of reward
design.

*Equal contribution 1Department of EECS, University of Cal-
ifornia, Berkeley, USA. Correspondence to: Sören Mindermann
<soeren.mindermann@gmail.com>.

Accepted at the 1st Workshop on Goal Specifications for Reinforce-
ment Learning, FAIM 2018, Stockholm, Sweden, 2018. Copyright
2018 by the author(s).

1. Introduction
We typically design AI systems in two steps: 1) determine a
reward function that ranks the desirability of different states
of the world; and 2) write an algorithm, e.g. planning or
reinforcement learning, to optimize that reward function.
Reward design, the problem of selecting an appropriate re-
ward function, is both critically important, as it encodes
the task the system should perform, and challenging, as it
requires reasoning about and understanding the agent’s envi-
ronment in detail. For example, in the game CoastRunners,
Amodei and Clark (2016) trained a reinforcement learn-
ing (RL) agent to maximize the score so it would learn to
win races. Instead, it learned to drive in circles to collect
points—a behavior quite distinct from racing to win. When
we deploy algorithms to directly optimize a hand specified
reward function, we implicitly rely on the system designer to
anticipate all possible behaviors and determine appropriate
incentives or penalties.

Consider the personal shopping assistant example in Fig. 1.
Alice wants her robot to buy healthy foods from the su-
permarket. She designs a set of features that capture the
ingredients and nutrients of the available products. She iter-
ates through trial-and-error to design a reward function over
these features that leads to good purchases. She rewards
vitamin A, so her robot gets carrots. However, unbeknownst
to Alice, the supermarket introduces a new product: energy
bars, which contain vitamin A, but also the rare unhealthy
ingredient Maltodextrin. Alice forgot to penalize Maltodex-
trin because the store originally contained no products with
both Maltodextrin and vitamin A. She got good behavior in
the training environment, even though her reward function
did not generalize.

Preference inference methods infer reward functions from
human-created data and can mitigate issues with reward mis-
specification. Inverse reinforcement learning (IRL) (Ng and
Russell, 2000; Abbeel and Ng, 2004; Ziebart et al., 2008) in-
fers a reward function from expert demonstrations. Another
common approach is to learn directly from preferences be-
tween states, actions or trajectories (Fürnkranz et al., 2012;
Wirth et al., 2016; 2017; Christiano et al., 2017). Inverse
reward design (IRD) (Hadfield-Menell et al., 2017) is a re-
cent preference inference method that learns directly from
an observed, possibly misspecified, proxy reward function.

Active Inverse Reward Design

Figure 1. Illustration of failed generalization. Alice designs a reward function so that her robot buys healthy food. She tunes the reward
by trial-and-error, rewarding vitamin A, and then penalizing fat (F) so that her robot buys carrots (A) but not eggs (FF). She forgets to
penalize the unhealthy ingredient Maltodextrin (M) because the robot now already buys healthy carrots and avoids cake (MF). When
deployed in a different store, the robot maximizing this proxy reward function buys an unhealthy energy bar which has both vitamin A and
Maltodextrin. In this work, we show how to learn the true reward function in such cases.

The probabilistic model of IRD assumes that the designed
reward function leads to approximately optimal behavior
specifically in the training environment.

In this paper, we consider an active learning approach to
IRD. We ask the designer to solve a sequence of reward
design problems that we actively select to maximize infor-
mation gain about the true reward. The core of our approach
is that we choose the set of proxy reward functions available
to the designer.

A natural way to design queries is to optimize over a discrete
set of reward functions. We present a greedy approach to
optimize this set and verify that it matches the performance
of a large random search. Drawing on recent work which
shows that determining the relevant features in a user’s pref-
erence leads to more efficient learning (Basu et al., 2018),
we consider queries where the designer specifies weights
for a small set of features. We design approaches to select
which features to query the designer on and the weights for
the remaining features.

Our contributions are as follows: we 1) present an active
learning approach to choose the set of proxy reward func-
tions available to the system designer; 2) present an algo-
rithm that actively selects between the features to query the
designer on, as opposed to directly selecting between reward
functions; and 3) evaluate this approach with experiments in
a personal shopping assistant and a 2D navigation domain.
We find that active selection leads to reduced regret at test
time compared with vanilla IRD - often fully recovering the
true reward function - and that binary feature-based queries,
which only ask the designer to specify two numbers, lead to
behavior equivalent to selecting between 10 discrete reward

functions. Our results indicate that actively selecting the set
of available reward functions is a promising direction for
increasing the efficiency and effectiveness of reward design.
In future work, we plan to apply this method to larger do-
mains and to verify that smaller queries reduce the load on
reward designers with a human subjects study.

2. Background
2.1. Inverse Reward Design

In inverse reward design (IRD) (Hadfield-Menell et al.,
2017) the goal is to infer the true reward function the de-
signer wants to optimize, given an observed, but possibly
misspecified proxy reward function. This allows the agent to
maintain a posterior over the true reward function and, e.g.,
avoid unintended side effects of an incorrect proxy reward
function.

The key idea behind the approach is the assumption it makes
about how the proxy reward function relates to the true
reward function. Reward design is an inherently complex
and hard-to-model process. IRD assumes that the reward
designer iterates on the proxy reward function, e.g., through
trial and error, until it incentivizes the correct behavior in
a training environment. This implies the core assumption
that IRD formalizes: proxy reward functions are likely to
the extent that they lead to high true utility behavior in the
training environment.

We will represent the decision problem faced by our agent
as a Markov decision process (MDP). To simplify notation,
we write reward functions r(ξ; w) = w>φ(ξ) as linear
in weights w and features φ(ξ) of a trajectory ξ. We note,

Active Inverse Reward Design

however, that none of our techniques rely on this linearity
assumption; they can be applied fully to arbitrary reward
functions and learned features. We assume that the system
designer selects a proxy reward function from a set of op-

tions
∼
r ∈

∼
R so that the agent’s behavior optimizes the true

reward function r∗ in the training environment
∼
M . We use

π(·|∼r,
∼
M) to represent the designer’s model of the agent’s

behavior given a proxy reward function and an environment.
This defines the reward design problem (Singh et al., 2010).

In the inverse reward design problem, the agent observes
∼
r ,

∼
R,
∼
M , and π(·|∼r,

∼
M) but crucially does not observe r∗ ∈ R

directly, whereR is the space of possible true reward func-
tions. The agent must infer r∗ from this information, under
the assumption that

∼
r incentivizes approximately optimal

behavior. In the next section, we describe how this assump-
tion is formalized into an observation model.

2.2. Observation Model

We assume a fixed training MDP
∼
M and a training agent

π(ξ|∼w,
∼
M) which defines a distribution over trajectories ξ

given proxy reward
∼
w. The key assumption of IRD is that

proxy reward functions are likely to the extent that they
incentivize high utility behavior in the training MDP. An
optimal designer chooses

∼
w so that the expected true value

E[w∗>φ(ξ)|ξ ∼ π(ξ|∼w,
∼
M)] is maximal. We model the

approximately optimal designer:

P (
∼
w|w∗,

∼
M) ∝ exp

(
β E

[
w∗>φ(ξ) | ξ ∼ π(ξ|∼w,

∼
M)

])
(1)

where β controls how close to optimal the designer is as-
sumed to be.

Cost of inference. Computing the normalization constant
∼
Z(w∗) for the likelihood (1) is the primary difficulty as it
involves integrating over all possible proxy rewards and
solving a planning problem for each. The resulting feature

expectations φ̃ = E[φ(ξ)|ξ ∼ π(ξ|∼w,
∼
M)] are memoized.

Hadfield-Menell et al. (2017) explores methods to approxi-

mate
∼
Z(w∗) by sampling.

Conversely, the normalization constant Z(
∼
w) for the poste-

rior P (w∗|∼w,
∼
M) ∝ P (

∼
w|w∗,

∼
M)P (w∗) integrates over

w ∈ R, and is cheap to compute once the feature expecta-
tions φ̃ have been memoized. The primary cost is to evaluate
the average reward wT φ̃ on memoized feature expectations
for each w. This does not involve planning and can be com-

puted in a single matrix multiplication for finite R and
∼
R.

Even for nonlinear reward functions, Z(
∼
w) is fairly cheap to

compute. Approximate inference methods such as MCMC

do not need to compute this normalizer at all.

2.3. Related work

A variety of approaches for learning reward functions have
been proposed. In inverse reinforcement learning (IRL)
(Ng et al., 2000; Ziebart et al., 2008), the agent observes
demonstrations of (approximately) optimal behavior, and
infers the reward function that would produce that behavior.
Reward functions have also been learned from expert ratings
(Daniel et al., 2014) and human reinforcement (Knox and
Stone, 2009; Warnell et al., 2017).

Methods that learn reward functions from preferences, sur-
veyed in Wirth et al. (2017), are particularly relevant to our
work. Christiano et al. (2017) learn a reward function from
preferences over pairs of trajectories, by searching over tra-
jectories sampled from the learned policy and querying the
user about pairs on which an ensemble of reward predictors
disagrees. A similar setup is used in Wirth et al. (2016)
based around Relative Entropy Policy Search (REPS) in-
stead of deep RL. It is also possible to learn reward functions
from preferences on actions (Fürnkranz et al., 2012) and
states (Runarsson and Lucas, 2014). APRIL (Akrour et al.,
2012) chooses new trajectories to compare to the current
best, based on the approximate expected utility of selection.

Our work is most similar to Sadigh et al. (2017), which
finds queries through gradient-based optimization directly
in trajectory space in a continuous environment. Their ob-
jective is expected volume removed from the hypothesis
space by the query, which has a similar effect as our method
of optimizing for information gain. We differ from prior
work by learning from preferences over reward functions
in a particular environment, rather than trajectories, states
or actions. Most of our queries are not binary, some tak-
ing the form of infinite sets, but these can still be seen as
preference queries. Of course, a preference over reward
functions is a preference over the corresponding trajecto-
ries, but by working directly with reward functions, we can
create more targeted queries, optimizing directly in the rela-
tively small, structured space of reward functions, instead
of the much larger space of trajectories. This lets us recover
the true reward function, leading to good generalization to
new environments. To our knowledge, no other method has
demonstrated this property.

3. Active Selection of Queries
In vanilla IRD, the designer selects an approximately opti-

mal proxy
∼
w from a proxy space

∼
R which is large – possibly

equal to the whole reward spaceR. In this work, they select

the reward function from small sets
∼
Rt ⊂

∼
R instead. We

call these sets queries. Reducing the size of the set sim-
plifies the choice for the designer and, as we will see, also

Active Inverse Reward Design

Figure 2. Illustration of active IRD. Active query selection: The large proxy space in figure 1 is replaced with a small query (in this case
of size 2 for illustration) whose answer is most informative given the training environment. The reward functions lead to different product
choices (policies) and the designer chooses the best one according to the true reward. Alice returns the reward function which leads to her
preferred behavior. The belief is updated based on the range of behaviors implied by the reward functions. After a number of iterations,
the robot is safely deployed in the actual environment.

improves regret in test environments while saving computa-
tion. We introduce discrete queries, small unstructured sets
of reward functions, and feature queries, affine subspaces of
∼
R that differ only in the weight given to particular features.

Active selection criterion. How do we select queries given
the current belief P (w∗)? An active learning criterion, or
acquisition function, should return a high value for queries
that are likely to convey useful information about w∗.

A common class of information-theoretic acquisition func-
tions used in active learning picks queries on which the
current model is uncertain. Uncertainty is often expressed
as the predictive entropy:

H[
∼
w|
∼
Rt,Dt] = −

∑
∼
wt∈

∼
Rt

P (
∼
wt|Dt) logP (

∼
wt|Dt), (2)

where Dt = {∼w1:t−1,
∼
R1:t−1} is the set of previously an-

swered queries and P (
∼
wt|Dt) is the predictive probability

that the user picks
∼
wt ∈

∼
Rt.

Uncertainty maximization can be sufficient for active super-
vised learning, where the user is queried to label a single
example, e.g. in (Gal et al., 2017). However, when the query
answers are noisy, uncertainty maximization can lead to
queries that are optimized to be close to the decision bound-
ary, i.e. close calls. This happens easily when queries are
sets of options, e.g. the algorithm could choose to present
a choice between reward functions that lead to identical
behavior.

Therefore, we also want to minimize a second term, the

expected conditional entropy EP (w∗|Dt)H[
∼
w|
∼
Rt, w

∗]. This
ensures that the user can decide the answer well in expecta-
tion. Substracting this from (2) gives the mutual information

I(w∗,
∼
w|
∼
Rt,Dt), also known as expected information gain.

We estimate this measure by sampling.

3.1. Discrete queries

A natural way to design queries is to optimize over a discrete
set of reward functions. A discrete query is of the form
∼
Rt = {∼w1, . . . ,

∼
wk} for some k. As in regular reward

design, the user is assumed to choose proxies by observing
the effects the reward functions have on the agent’s behavior
in the training environment. The features therefore do not
have to be interpretable.

3.1.1. COMPUTATIONAL EFFICIENCY

Discrete queries allow us to maximize the information
learned about the true reward function while minimizing the
number of reward functions for which we have to plan (or
learn) a policy. We can learn more about the true reward
than IRD does, given the same number of plans computed.

To this end, we initially sample a proxy space
∼
Rpool ⊂ R of

size kpool � |R|, a hyperparameter that trades off between
computation (planning calls) and the sample efficiency of

user answers. We actively select the query from
∼
Rpool since

query selection is expensive, but when we get the user an-
swer, we compute the belief update over all ofR, so we can
still find the optimal reward function. For every proxy re-

Active Inverse Reward Design

Figure 3. Continuation of the example in figure 2 - after the second
query, we infer that Maltodextrin (M) is worse than fat (F) by
comparing between two suboptimal choices - cake and eggs. Full
IRD cannot infer this because it only observes that the human most
prefers carrots.

ward function
∼
w, to compute its likelihood (Equation 1) we

need its implied feature expectations φ(ξ), ξ ∼ π(ξ|∼w,
∼
M).

Since feature expectations are computed through (expen-
sive) planning, we refer to them as plans. Before user in-
teraction, we calculate and memoize plans for all proxies

in
∼
Rpool. When evaluating a query

∼
Rt ⊂

∼
Rpool, we reuse

the pre-computed plans. This means that no plans have to
be computed at interaction time for active query selection
or inference. Holding the number of features constant, at
interaction the algorithm is therefore independent of the dif-
ficulty of the training environment. Moreover, computation
for query selection only increases linearly with the number
of features.

This is a key efficiency advantage over vanilla IRD, which
computes plans for normalization (section 2.2) but does not
reuse them to learn about the user’s preferences between
suboptimal plans. In other words, vanilla IRD merely learns

which proxy
∼
w ∈

∼
Rpool maximizes the reward w∗T φ̃ (as-

suming a perfectly rational user), which means that |
∼
R|

possible outcomes could be inferred a priori. Instead, our

method can learn a preference ordering on
∼
Rpool, which

means kpool! outcomes can be inferred in principle. This
ordering conveys the maximal amount of information about
w∗ that can be learned from computing plans only for prox-

ies in
∼
Rpool, since the user’s answers can be perfectly pre-

dicted using this ordering. Our experiments show that a
series of small random queries indeed reduces the entropy
H[w∗] more than IRD does, and even more than a series of
large random queries. This leads to the result in figure 3.

Greedy query selection. Searching over all queries of
size-k requires

(
kpool

k

)
evaluations of the expected informa-

tion gain. We therefore grow queries greedily up to size
k, requiring only O(kpoolk) evaluations. Empirically we

find this compares favorably to random search with a much
larger number of evaluations.

3.2. Feature queries

While small discrete queries are computationally attractive,
it can be impractical for users to pick from a large, unstruc-
tured set, even though this may convey more information
about the true reward. We therefore propose large structured
feature queries, where the user tunes a subset of the indi-
vidual weights while the other weights are fixed. In other
words, feature queries are low-dimensional affine subspaces
of the proxy reward function space. This decomposes the
full reward design problem (a search over a potentially high-
dimensional space) into a series of reward design queries
where the user can judge the effects of a few individual
features that are currently most informative to tune. We
could imagine a graphical user interface in which the user
can move sliders for each weight, and see the effect on the
agent behavior.

Let (φ1(s), . . . , φF (s)) = φ(s) be the feature function.

We define a feature query
∼
RS for a set of free weights

S ⊂ {1, . . . , F} and a set of fixed weights with indices
{1, . . . , F} \ S to be the set of vectors in RF which has
all combinations of wi ∈ R (or a bounded subset of R) for
i ∈ S and fixed real values for the other weights wi for
i ∈ {1, . . . , F} \ S. The size of the query is given by |S|.

Actively selecting feature queries sacrifices some of the
computational advantages of discrete queries for higher
usability and sample-efficiency of user responses.

3.2.1. FEATURE QUERY OPTIMIZATION

Recall that we want to choose the feature query that max-
imizes the expected information gain. There are two vari-
ables to optimize over: the indices of the free features and
the values of the fixed features. Our best-performing algo-
rithm greedily searches over combinations of free feature
indices and optimizes the fixed weights for each combina-
tion. We also tested a cheaper algorithm that leaves the fixed
weights at 0 or the current prior average.

We greedily add free features to maximize expected infor-
mation gain. Tuning the fixed weights is more difficult as
we are optimizing over a continuous space RF−k. We tried
two optimization methods, gradient descent and random
search. To see that our objective function is a differentiable
function of the F−k fixed weights in the query, note that we
can use a differentiable planning algorithm, such as value
iteration (Tamar et al., 2017). Other differentiable planning
algorithms have been introduced recently (Srinivas et al.,
2018; Buesing et al., 2018; Guez et al., 2018) but value
iteration was sufficient for our purposes. Similar to (Sadigh
et al., 2017), who optimize an active learning objective di-

Active Inverse Reward Design

rectly in continuous trajectory space, we optimize the fixed
weights directly in an (F − k)-dimensional subspace of
reward function space. We observed that simple gradient de-
scent converges to a (local) maximum in a small number of
steps, usually ∼10. Additionally, we used a small random
search over RF−k to find a good initialization. This im-
proves results considerably and helps mitigate the effects of
local maxima. Random search by itself provides a consider-
able benefit and can be used for non-differentiable planners.
Our simple optimization scheme may be improved upon in
future work.

Discretization. Exactly evaluating the expected informa-
tion gain is only tractable for finite queries. We therefore
discretize the free features in [−1, 1]k. A coarse discretiza-
tion is used during query selection, while a finer grid is used
for the actual user input.

4. Evaluation
We use two metrics for evaluation: (1) the entropy of the
agent’s belief H[w∗], and (2) the regret obtained by optimiz-
ing the posterior mean of the robot’s belief across a set of
novel test environments when the agent optimizes for the
posterior average reward w̄ = E[w∗|D]. We selected 20
queries per experiment and averaged results over 100 runs.

We designed our experiments to answer the following ques-
tions: (1) how performance varies as we increase discrete
query size from minimal (2 proxy rewards) to maximal (full
IRD), (2) can active query selection outperform random
queries and can greedily grown queries match a large ran-
dom search, (3) how do the two feature query optimizations
(selecting free features and also optimizing fixed features)
perform compared to a random baseline, (4) which query
type is most sample efficient?

We tested on two distributions of environments: stores
(‘shopping’ domain) with many different products, and a 2D
navigation task with hot and cold objects to which the agent
has to minimize resp. maximize its distance. The shopping
domain consists of randomly generated environments with
100 actions and states, and 20 normally distributed features
φ(s) for each state s. Action i deterministically leads to
state i. Therefore, the agent merely has to calculate which
action (product) leads to the highest reward. We used an
approximately optimal agent which is differentiable as a
function of the reward.

Our 2D navigation task, which we term ‘chilly worlds’,
consist of a 10× 10 grid with random walls and 20 objects
in random positions, which define a 20-dimensional feature
vector of distances to each object. The agent is a simple
differentiable implementation of value iteration.

4.1. Results

Experiment 1: Discrete query sizes and full IRD (left in
figure 4). For the first experiment, we tested the perfor-
mance of random queries from size 2 to 10000 to test our
hypothesis that full IRD (equivalent to a maximal query
size) can be outperformed if we also learn preferences be-
tween suboptimal behaviors. We reduced the size of the
reward space R to 10000 to be able to do exact inference
for the full IRD baseline. Here we used the maximal proxy

space
∼
R = R. We can see full IRD as a special case of

active IRD in this setting, with a query size of 10000. Full
IRD was run 20 times to show its convergence behavior,
although it would normally be run only once.

Figure 4 shows that we can quickly outperform the general-
ization performance of full IRD simply by asking random
queries which compare between suboptimal proxies. Using
our method, the entropy drops to nearly zero, indicating
that the true reward function has been successfully iden-
tified, while full IRD retains some uncertainty about the
true reward function. As expected, increasing the query
size initially helps. Interestingly, larger queries already
hurt starting from a size of > 10, with full IRD perform-
ing worst. Note that performance on the first query strictly
increases with query size, and a larger query size only de-
creases performance once the entropy has been somewhat
reduced. This underscores the point made in figure 3: we
want to learn preferences between suboptimal options once
we know what optimal behavior is (and smaller queries are
more likely to only contain suboptimal choices). For all
further experiments we increased |R| to 106.

Experiment 2: Discrete queries and full IRD (right in
figure 4). Next, we compared our active learning algo-
rithm for discrete queries to a baseline of random queries
and compared the greedy selection to an expensive large
query search. The hyperparameter kpool (size of the proxy

space
∼
Rpool) was set to 100. Figure 4 shows for a query size

of 5 that greedy active query selection matches a random
search of size 10000 over queries (the lines for the shopping
domain are indistinguishable), confirming previous litera-
ture which found empirically that greedy algorithms can
approach optimality for information gain (Sharma et al.,
2015). Data for query sizes 2, 3 and 10 are not presented
here, but are summarized in figure 5. Random queries and
full IRD (shades of grey) are clearly outperformed by ac-
tive selection. Another observation is that active selection
becomes more important the more entropy has already been
reduced. This is likely because a random query is unlikely
to target the small amount of remaining uncertainty at later
stages.

Experiment 3: Feature query selection methods. Figure
5 shows feature queries with 1 free feature. The conditions

Active Inverse Reward Design

Figure 4. Left: Random discrete queries of sizes 2, 10, 50, and repeated exact full IRD with a proxy reward space of size 10000. Larger
queries lead to faster initial learning, but can lead to worse final performance. Right: Discrete query selection methods (query size 5) and
full IRD. Note that the cheap greedy selection matches the expensive search and IRD remains too uncertain to generalize well.

Figure 5. Left: Feature query selection methods with 1 free feature. Comparing 1) Unoptimized random feature query 2) free feature
actively selected 3) additionally, fixed weights optimized. There is a trade-off between computational efficiency (2) and sample efficiency
(3). Right: Cumulative test regret (area under curve) for discrete and feature queries of different sizes using the best-performing selection
methods.

Active Inverse Reward Design

are: (1) fully random queries, (2) only free features actively
selected, and (3) both free features and fixed weights actively
selected. In both (1) and (2), the fixed weights are set to
0. Optimizing fixed weights can cause a significant benefit
and is therefore recommended if the sample efficiency of
answers is crucial. If computational efficiency is crucial,
simple greedy selection of the free features is a cheap and
adequate alternative.

Sample efficiency: Comparison between differently
sized discrete and feature queries. We summarized
the sample efficiency for different query types and sizes
as the area under the curve (cumulative test regret). Fig-
ure 5 shows that a larger query size significantly improves
discrete, greedily optimized queries. The data on feature
queries indicate that tuning only a single feature at a time
can be effective (matching size 10 discrete in the ‘chilly
world’ environment), which is attractive from a usability
point of view. Binary feature-based queries, which only
ask the designer to specify two numbers, lead to behavior
equivalent to selecting between an unstructured set of 10
discrete reward functions.

5. Discussion
Summary. This paper introduced active learning methods
for inverse reward design which use the uncertainty in the
IRD posterior to extract as much information as possible
from the user’s choice of reward function. The presented
approach helps identify the true reward, leading to better
generalization in test environments; improves the computa-
tional limitations of IRD; and potentially helps the user be
more accurate and save time. We evaluated on two distri-
butions of environments and explored various optimization
methods and trade-offs between computation and sample-
efficiency.

Limitations and future work. There is significant po-
tential to scale active inverse reward design in future work.
Firstly, the most straightforward extension would simply
precompute a set of policies from proxies in larger environ-
ments with linear reward functions. As discussed, our dis-
crete queries are independent of the environment’s difficulty
and scale linearly with the number of features. Secondly,
reward functions could also be defined on learned features.
The querying process described in this paper could itself
be repeated so that new features can be learned each time
using improved reward estimates. This would address the
limitation that initially sampled proxies may not lead to
interesting behavior. Thirdly, the use of nonlinear reward
functions goes well with our approach as we only need to
evaluate trajectory returns to calculate likelihoods. During
inference and query selection, the reward over distributions
of buffered trajectories would be evaluated instead of com-
puting inner products with feature expectations, which is

still fast and does not involve planning.

We hope that our work inspires new methods for reward
design, e.g. new types of reward design queries. Our feature
queries ask the user to tune weights for individual features,
but these could instead be informative latent variables in
reward function space. Overall, we are excited about the
implications active IRD has not only in the short term, but
also about its contribution to the general study of the value
alignment problem.

References
Abbeel, P. and Ng, A. Y. (2004). Apprenticeship learning via

inverse reinforcement learning. Twenty-first international
conference on Machine learning - ICML ’04, page 1.

Akrour, R., Schoenauer, M., and Sebag, M. (2012). APRIL:
Active preference learning-based reinforcement learning.
In Lecture Notes in Computer Science (including sub-
series Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), volume 7524 LNAI, pages 116–
131.

Amodei, D. and Clark, J. (2016). Faulty reward functions
in the wild.

Basu, C., Singhal, M., and Dragan, A. D. (2018).
Learning from richer human guidance: Augmenting
comparison-based learning with feature queries. CoRR,
abs/1802.01604.

Buesing, L., Weber, T., Racaniere, S., Eslami, S. M. A.,
Rezende, D., Reichert, D. P., Viola, F., Besse, F., Gregor,
K., Hassabis, D., and Wierstra, D. (2018). Learning
and Querying Fast Generative Models for Reinforcement
Learning.

Christiano, P. F., Leike, J., Brown, T., Martic, M., Legg,
S., and Amodei, D. (2017). Deep reinforcement learning
from human preferences. In Advances in Neural Informa-
tion Processing Systems, pages 4302–4310.

Daniel, C., Viering, M., Metz, J., Kroemer, O., and Peters,
J. (2014). Active reward learning. In Robotics: Science
and Systems.

Fürnkranz, J., Hüllermeier, E., Cheng, W., and Park, S.-H.
(2012). Preference-based reinforcement learning: a for-
mal framework and a policy iteration algorithm. Machine
Learning, 89(1-2):123–156.

Gal, Y., Islam, R., and Ghahramani, Z. (2017). Deep
Bayesian Active Learning with Image Data. In Proceed-
ings of the 34th International Conference on Machine
Learning (ICML), pages 1183–1192.

Active Inverse Reward Design

Guez, A., Weber, T., Antonoglou, I., Simonyan, K., Vinyals,
O., Wierstra, D., Munos, R., and Silver, D. (2018). Learn-
ing to Search with MCTSnets.

Hadfield-Menell, D., Milli, S., Abbeel, P., Russell, S. J., and
Dragan, A. (2017). Inverse reward design. In Advances
in Neural Information Processing Systems, pages 6768–
6777.

Knox, W. B. and Stone, P. (2009). Interactively shaping
agents via human reinforcement: The tamer framework.
In Proceedings of the fifth international conference on
Knowledge capture, pages 9–16. ACM.

Ng, A. and Russell, S. (2000). Algorithms for inverse re-
inforcement learning. Proceedings of the Seventeenth
International Conference on Machine Learning, pages
663–670.

Ng, A. Y., Russell, S. J., et al. (2000). Algorithms for inverse
reinforcement learning. In Icml, pages 663–670.

Runarsson, T. P. and Lucas, S. M. (2014). Preference learn-
ing for move prediction and evaluation function approxi-
mation in othello. IEEE Transactions on Computational
Intelligence and AI in Games, 6(3):300–313.

Sadigh, D., Dragan, A., Sastry, S., and Seshia, S. A. (2017).
Active preference-based learning of reward functions. In
Robotics: Science and Systems (RSS).

Sharma, D., Kapoor, A., and Deshpande, A. (2015). On
Greedy Maximization of Entropy. Proceedings of the
32nd International Conference on Machine Learning,
37:1330–1338.

Singh, S., Lewis, R. L., and Barto, A. G. (2010). Where Do
Rewards Come From? Proceedings of the International
Symposium on AI Inspired Biology - A Symposium at the
AISB 2010 Convention, pages 2601–2606.

Srinivas, A., Jabri, A., Abbeel, P., Levine, S., and Finn,
C. (2018). Universal planning networks. CoRR,
abs/1804.00645.

Tamar, A., Wu, Y., Thomas, G., Levine, S., and Abbeel, P.
(2017). Value iteration networks. In IJCAI International
Joint Conference on Artificial Intelligence, pages 4949–
4953.

Warnell, G., Waytowich, N., Lawhern, V., and Stone,
P. (2017). Deep tamer: Interactive agent shaping
in high-dimensional state spaces. arXiv preprint
arXiv:1709.10163.

Wirth, C., Akrour, R., Neumann, G., and Fürnkranz, J.
(2017). A Survey of Preference-Based Reinforcement
Learning Methods. Journal of Machine Learning Re-
search, 18(136):1–46.

Wirth, C., Furnkranz, J., Neumann, G., et al. (2016). Model-
free preference-based reinforcement learning. In 30th
AAAI Conference on Artificial Intelligence, AAAI 2016,
pages 2222–2228.

Ziebart, B. D., Maas, A. L., Bagnell, J. A., and Dey, A. K.
(2008). Maximum entropy inverse reinforcement learning.
In AAAI, volume 8, pages 1433–1438. Chicago, IL, USA.

